Enhanced glucose uptake via GLUT4 fuels recovery from calcium overload after ischaemia-reperfusion injury in sevoflurane- but not propofol-treated hearts.

نویسندگان

  • E Lucchinetti
  • L Wang
  • K W S Ko
  • H Troxler
  • M Hersberger
  • L Zhang
  • M A Omar
  • G D Lopaschuk
  • A S Clanachan
  • M Zaugg
چکیده

BACKGROUND So far, no study has explored the effects of sevoflurane, propofol, and Intralipid on metabolic flux rates of fatty acid oxidation (FOX) and glucose oxidation (GOX) in hearts exposed to ischaemia-reperfusion. METHODS Isolated paced working rat hearts were exposed to 20 min of ischaemia and 30 min of reperfusion. Peri-ischaemic sevoflurane (2 vol%) and propofol (100 µM) in the formulation of 1% Diprivan(®) were assessed for their effects on oxidative energy metabolism and intracellular diastolic and systolic Ca(2+) concentrations. Substrate flux was measured using [(3)H]palmitate and [(14)C]glucose and [Ca(2+)] using indo-1AM. Western blotting was used to determine the expression of the sarcolemmal glucose transporter GLUT4 in lipid rafts. Biochemical analyses of nucleotides, ceramides, and 32 acylcarnitines were also performed. RESULTS Sevoflurane, but not propofol, improved the recovery of left ventricular work (P=0.008) and myocardial efficiency (P=0.008) compared with untreated ischaemic hearts. This functional improvement was accompanied by reduced increases in post-ischaemic diastolic and systolic intracellular Ca(2+) concentrations (P=0.008). Sevoflurane, but not propofol, increased GOX (P=0.009) and decreased FOX (P=0.019) in hearts exposed to ischaemia-reperfusion. GLUT4 expression was markedly increased in lipid rafts of sevoflurane-treated hearts (P=0.016). Increased GOX closely correlated with reduced Ca(2+) overload. Intralipid alone decreased energy charge and increased long-chain and hydroxyacylcarnitine tissue levels, whereas sevoflurane decreased toxic ceramide formation. CONCLUSIONS Enhanced glucose uptake via GLUT4 fuels recovery from Ca(2+) overload after ischaemia-reperfusion in sevoflurane- but not propofol-treated hearts. The use of a high propofol concentration (100 µM) did not result in similar protection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Choice of anesthetic combination determines Ca2+ leak after ischemia-reperfusion injury in the working rat heart: favorable versus adverse combinations.

BACKGROUND There is a lack of studies investigating cardioprotection by common combinations of anesthetics. However, because a general anesthetic consists of a mixture of drugs with potentially interfering effects on signaling and cytoprotection, the most favorable combination should be used. METHODS Working rat hearts were exposed to 20 min of ischemia and 30 min of reperfusion. Periischemic...

متن کامل

Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis.

BACKGROUND The ischemic heart is dependent on glycolysis for ATP generation, and therapies that increase glucose utilization during ischemia improve survival. Myocardial ischemia results in the translocation of the glucose transporter proteins GLUT1 and GLUT4 to the sarcolemma. The increased glucose entry via these transporters contributes to enhanced glycolysis during ischemia. METHODS AND R...

متن کامل

Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload.

AIMS Glycogen synthase kinase-3 (GSK-3) is a multi-functional kinase that regulates signalling pathways affecting glycogen metabolism, protein synthesis, mitosis, and apoptosis. GSK-3 inhibition limits cardiac ischaemia-reperfusion (IR) injury, but mechanisms are not clearly defined. This study tested the hypothesis that acute GSK-3 inhibition stimulates glycogen synthesis, repartitions glucose...

متن کامل

AMPK-Regulated and Akt-Dependent Enhancement of Glucose Uptake Is Essential in Ischemic Preconditioning-Alleviated Reperfusion Injury

AIMS Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury. METHODS Normal or streptozotocin (STZ)-treated diabetic rats subjected...

متن کامل

Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition.

OBJECTIVE Diminishing oxidative stress may protect the heart against ischaemia-reperfusion injury by preventing opening of the mitochondrial permeability transition (MPT) pore. The general anaesthetic agent propofol, a free radical scavenger, has been investigated for its effect on the MPT and its cardioprotective action following global and cardioplegic ischaemic arrest. METHOD Isolated perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • British journal of anaesthesia

دوره 106 6  شماره 

صفحات  -

تاریخ انتشار 2011